Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning
نویسندگان
چکیده
Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain.
منابع مشابه
Tissue-specific sparse deconvolution for brain CT perfusion
Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting...
متن کاملTissue-Specific Sparse Deconvolution for Low-Dose CT Perfusion
Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra usually occur in cerebral per...
متن کاملSparsity-Based Deconvolution of Low-Dose Perfusion CT Using Learned Dictionaries
Computational tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, such as stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational meth...
متن کاملAnisotropic Tensor Total Variation Regularization For Low Dose Low CT Perfusion Deconvolution
Tensor total variation (TTV) regularized deconvolution has been proposed for robust low radiation dose CT perfusion. In this paper, we extended TTV algorithm with anisotropic regularization weighting for the temporal and spatial dimension. We evaluated TTV algorithm on synthetic dataset for bolus delay, uniform region variability and contrast preservation, and on clinical dataset for reduced sa...
متن کاملTowards Robust Deconvolution in Medical Imaging: Informatics, Diagnosis and Treatment
Robust deconvolution, the task of estimating hemodynamic parameters from measured spatio-temporal data, is a key problem in computed tomog-raphy perfusion. Traditionally, this has been accomplished by solving the inverse problem of the temporal tracer enhancement curves at each voxel independently. Incorporating spatial contextual information, i.e. information other than the temporal enhancemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image analysis
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2013